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Introduction

Tin and Tungsten mining in the Erzgebirge mountains (Saxony, Germany)

has a history going back at least to the 14th century and reached its peak

between 1950 to 1990.

Qualitative and quantitative predictive maps of Sn, W, fluorite and

baryte for a 740 km² test area in the central Erzgebirge were created with

an artificial neural network (ANN) based approach using advangeo®.

The area is characterized by gneiss domes overlain by a several km thick

sequence of mica schists, phyllites and shales of Cambro-Ordovician age.

The gneiss domes are intruded by syn- to postorogenic Variscan granites of

the Eibenstock (Sn-, W-, Li-enriched), Bergen (W-enriched) and Kirchberg

(barren) types. Sn and W deposits occur as pneumatolytic quartz-

cassiterite resp. quartz-wolframite veins and as magnetite-cassiterite-

wolframite-scheelite skarns in three distinct levels of the micaschist –

phyllite sequence.

For the 3D predictive models, the area was extended to the NW along the

Central Saxon Lineament, an area with many fault-bounded blocks of

various lithologies and an inferred covered intrusion of a Sn-enriched

granite.
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A 3D model of the extended test area was constructed and

converted to a Voxet model in Paradigm Gocad®. 3D Inversion
modeling via Intrepid GeoModeller® was applied both to convert

gravity and magnetics data to 3D data (in the form of density and

susceptibility models) and to refine the geometry of concealed

granite intrusions. The individual voxels were attributed with

geological unit, lithology, geochemical and geophysical

properties, tendency to form joints, existence of calcareous

layers and other properties. True 3D distances to the different

categories of faults and to the granite surfaces were calculated

with the tools available in Gocad®. The outer boundaries of

known deposits were modeled and the voxels inside were

assigned as training data for the corresponding type of deposit.

The Voxet was imported into the advangeo® 3D Prediction
Software. Model creation, assessment and refinement

proceeded in analogy with the 2D case. The prediction voxet can

be viewed and manipulated in Gocad®, or free viewers like

Geocando or Mira Geoscience Analyst®.

Some examples of used Model Input Data (MID)
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Skarns occur in three distinct calcareous horizons. Distances to granites and

faults were calculated with respect to the median plane of these horizons.

Furthermore, the 3D angles between these median planes and the underlying

granite were calculated. By reconstructing the eroded parts of the skarn horizons

as far as possible with the known structural data and thickness constraints it is

possible to “predict” former skarn occurrences in the eroded part of the model and

thereby to assess the level of erosion of the overall ore district and of individual

deposits The result is a differentiated picture of the skarn deposits in the test area

with improved detection and accurate depth estimates of predicted concealed

deposits.

All datasets were converted to a uniform grid, in this case of 50 m

resolution. A database of known deposits was compiled with the location,

size and category of resource blocks. For quantitative predictions, the metal

content of the resource blocks was divided evenly across the corresponding

grid cells. These datasets were used as the training data, which the ANN

tried to remap from the model input data during the training phase of the

modeling.

Geological, geochemical (stream sediment geochemistry) and
geophysical data (aeromagnetics, surface gravity surveys, airborne

gamma spectrometry) were collected, processed, and interpolated to the

uniform grid. Gradients and curvatures of the field were calculated in

advangeo® and used as additional optional model input data (MID).

Faults were grouped by direction (N-S, NE-SW, E-W, NW-SE) and by

length to assess which fault sets are relevant to the formation of different

types of deposits. The grid cells were attributed with distances to the

nearest fault of every type, and the distance to the nearest fault crossing.

Finally, an isobath model of several geologic horizons and the surfaces of

the different granite types was constructed. Distances were calculated

between the granite and the horizons and the granites and the surface.

In the advangeo® Prediction Software, eight types of model were

calculated (combinations of commodity: Sn or W; type: vein or skarn; data:

qualitative or qualitative), each with the appropriate training data and

different combinations of MID.

The resulting predictions were evaluated by the smoothness of the error

curves, the residual error and by their accuracy to remodel the training data.

For each MID, connection weights and the weight according to Garsons´

algorithm were calculated to interpret the importance of the various geologic

factors. In successive models, the MID were refined to test different

combinations and obtain progressively better prediction results.

Model Input Data (MID)
Connection 

Weights
Garsons´
Algorithm

Distance to granite type Eibenstock 107,14 5,14

Extent of granite -590,37 3,25

Aeromagnetics DeltaT Slope -1922,43 3,24

Distance to very large faults -498,07 3,17

Distance to Geological Units – Thum Group -433,56 2,44

Gravimetry Gradient -741,45 2,13

Distance to faults of high sinuosity -324,36 2,07

… … …
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ROHSA 3 (Rohstoffe in Sachsen)

The 2D and 2.5D models were created

in the frame of the ROHSA 3 project

funded by the Saxon State Office for

Environment, Agriculture and Geology.
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Results

• Prediction maps for vein- and skarn-hosted Sn and W over a 740 km² area were created. 

• The maps contain charts to asses the model quality and a table of the used MID and their relative weights. 

• Predicted mineral reserves / resources:

− Sn in vein-type deposits of 200 kt; Sn in skarn-type deposits is predicted to amount to 700 kt,

− W hosted in skarns with 120 kt WO3; W in vein-hosted deposits are negligible (< 2 kt). 

• The erosional level of the district is intermediate, with about 50% of the skarn deposits eroded.

Conclusions

• A wide array of qualitative and quantitative geological data can be integrated and used with Artificial 
Neural Networks. 

• Successful application of the approach to a traditional mining area and the qualitative and quantitative 
prediction of unexplored concealed deposits in this area as a result. 

• Progress from 2D to 3D modeling has greatly improved the numerical representation of deposit-

controlling geological factors and enables to define drilling targets and locate them in 3D space.


