Mineral exploration targeting – A case study from Ghana

Andreas Barth, Solomon Anum

Agenda

- 1. Ghana mineral potential
- 2. Creation of Geo-database Ghana
- 3. Methodology of predictive mapping
- 4. Gold predictive mapping in NW Ghana
- 5. Conclusions

INTRO.

POPULATION GROWTH

Demand for more land for:

Mining

Agriculture/forestry

Human settlement

Ghana - mineral potential

Main minerals are gold, manganese, diamonds, bauxite, iron.
Geological Survey has generated volumes of data on these minerals

Private exploration and international projects have generated a large amount of geo-scientific data.

In 2003 – 2010 the EU funded MSSP has spend 35 Mio EU, mainly for data generation and related issues.

The usual situation....

- Data is not systematically stored
- Data is not really available
- Many (potential) users are not aware of the existing data

The Geo-database Ghana was implemented in 2006-2007

Geo-database Ghana

Geodata

 Deposits, mines, production data, bore holes, licenses, field data, geochemistry,

geophysics, ...

- Metadata
 - Reports, maps
- Functions
 - Inquiries, export, import
 - Presentation, GIS, maps
- Complementing features
 - Base data

Exploration targeting

Identify sites with a high mineral potential

Data and Knowledge requirements for predictive mapping

The traditional approach of predictive mapping

Using artificial neural networks

Artificial neural network features

Model: natural neuron

- Simulation of biological processes by use of suitable mathematical operations
- ARTIFICIAL NEURAL NETWOKS is a statiscal analyzing method for
- complex as well as for non linear
- relationships
- They able to learn from given examples
- Work with huge amount of data
- No problem with noisy data
- Work with existing data
- Comparable quick
- Apply their knowledge in similar environment

Available data and knowledge

- Airborne geophysics:
 - all country covered, but different resolution, equipment, ...
- Geological maps:
 - 1:1,000,000 for the country (BGR-GSD Ghana, 2010)
 - 1:1,000,000 map (Minerals Commission of Ghana, 2002)
 - Other scales
- Geochemical data:
 - selected maps only, no systematic data in a suitable density
- Metallogenetic models of Au ore bodies

Airborne Geophysical Data

- Between 1996 and 1998, the World Bank/ Nordic Development Fund sponsored the Mining Sector Development and Environment Project.
- The EU funded MSSP has covered the Volta and Keta bassins

Source: Geological Survey Department of Ghana

MODEL DATASETS

Create predictive maps for Au - NW Ghana

- Au generates i income in Ghana more than any mineral
- Au mining creates jobs and supports the local & national economy
- Au mining creates serious environmental damages
- Mineral resources must be included into the land use planning activities

Predictive maps can provide a important input into the national development strategy

The geology

Source: Geodatabase Ghana; 1:1,000,000 scale geological maps

Mineral occurrence locations

Source: Geodatabase Ghana

The tectonic structures

Source: Geodatabase Ghana; Different geological maps

Magnetics & electromagnetics

Gammaspectrometry Potassium Thorium Uranium Totalcount tvongeo®

Processing of model input data: tectonics

Creation of distance layers: how fare is a point away from a structure

More model input data

Intersections of tectonic structures

Important rock contacts

The artificial neural network modeling

Model 3

U, Th, K, total, magnetics, elctromagnetics

□ 0.000349824 - 0.5
□ 0.500000000 - 0.55
□ 0.5500000000 - 0.6
□ 0.650000000 - 0.7
□ 0.700000000 - 0.75
□ 0.750000000 - 0.8
□ 0.850000000 - 0.9

0.900000000 - 0.95

Model 4

U, Th, K, total, magnetics, structures

- 0.000349824 0.5
- 0.500000000 0.55
- 0.550000000 0.6
- 0.600000000 0.65
- 0.650000000 0.7
- 0.700000000 0.75
- 0.750000000 0.8
- 0.800000000 0.85
- 0.850000000 0.9
 - 0.900000000 0.95

Model 5

U, Th, K, total, magnetics, structures, rocks, intersections, rock contacts

- 0.000349824 0.5
- **....** 0.500000000 0.55
- 0.550000000 0.6
- ___0.650000000 0.7
- 0.700000000 0.75
- **0.800000000 0.85**
- **0.850000000 0.9**
- **--** 0.900000000 0.95

The regional predictive map

- easy to read
- suitable for long term national planning
- ensures better use of exploration funds
- attracts and guides investment

High resolution predictive maps 1:50,000

Accuracy 50 - 100 m

Starting point for prospecting and exploration activities for:

- small scale miners
- Medium companies
- Large Scale mining companies

Guidance for local land use planning:

- Delineation of preferred prospecting areas
- construction of roads and settlements....

Cross border application

Benefits of predictive mapping

State sector:

- Guidance of mineral sector development, incl. small scale mining activities → contributes to employment programs
- Guidance of the national development & land use planning

Private sector:

- Fast identification of exploration targets
- Support of investment decision making processes
- Support/ enhance exploration activities
- Reduction of exploration risks

Conclusions

- Mineral prediction maps are important instruments:
 - To identify potentials
 - To attract and guide investment
 - To guide the national development
 - To improve the resource management at both local and national levels
- Artificial neural networks are an effective tool for the creation of prediction maps
- The fast knowledge based identification of exploration targets becomes possible

Thank you for your attention

