REGOLITH LANDFORM MAPPING IN WESTERN BURKINA FASO, USING AIRBORNE GEOPHYSICS AND REMOTE SENSING DATA IN A NEURAL-NETWORK

Why regolith mapping?

- Source of economically significant primary resources
- Impact on mineral exploration strategies
- Long-term landscape evolution and erosion modelling

Regolith mapping – traditional approaches

- Field-based surveys, well suited but:
 - lengthy & expensive for large areas -> small-scale/insufficient detail
 - inaccessible terrain -> missing information
 - subjective view of the person mapping -> difficult to replicate
- Remote sensing approaches:
 - visual interpretation
 - spectral classification

...Remote sensing approaches

Data

Advantages

Disadvantages

Visual interpretation

Aerial photographs, Geoeye, Landsat, SPOT, geophysics

High level of detail with sufficient spatial resolution

Time-consuming
Subjective

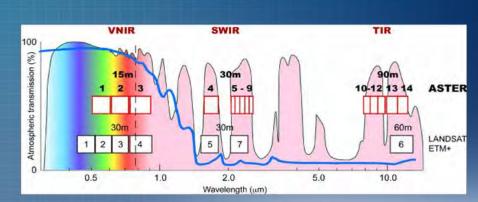
Spectral classification

Multi- and hyperspectral imagery

Automated Objective

Vegetation cover

Typical landscapes of western Burkina Faso



Combination of several techniques

- Airborne Gamma-ray spectrometric surveying
 - Flight lines 500 m spacing (gridded at 125 m)
 - K, eTH, eU as absolute concentrations + total count

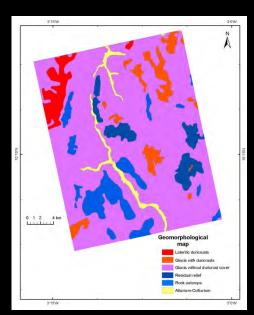
- Spaceborne imaging radar data
 - SRTM Global elevation dataset (90 m)
 - ALOS PALSAR, RADARSAT-2 polarimetric data (12 – 30 m)
- Spaceborne multi-spectral data
 - ASTER 14 bands (15 90 m)
 - Landsat 7 ETM+ 7 bands (15 60 m)

Landsat and ASTER bands plotted on model atmosphere (JPL)

Primary aim is to develop an automated/semi-automated procedure for the mapping of different regolith units using airborne geophysics and satellite remote sensing data.

western Burkina Faso

Study area


Digital elevation model

Regional chronosequence of lateritic surfaces

Geomorphological map

Morphopedological map

Regimes of regolith formation

Churchward (2005)

IGB & IGN 1

1:500,000

IRD

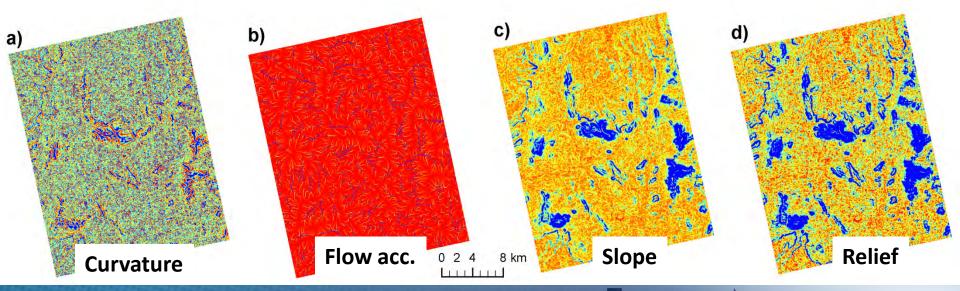
Geophysical and remote

ALOS PALSAR - Pauli decomposition image

Gamma-ray spectrometry + DEM

Minimum noise **fraction ASTER** First – three bands

Geomorphometry


- Automation requires quantitative topographic information
- Characterise regolith units using morphometric variables extracted from DEM

30 m DEM

Morphometric variable	Description
Curvature (1/m)	Second derivative of the elevation
Flow accumulation	Number of cells flowing into each other
Slope (°)	Magnitude of the steepest gradient
Relief (m)	Range of elevation
Aspect (°)	Slope direction facing

Classification

- Automatically assign pixels to the regolith classes:
 - high glacis
 - low glacis
 - residual terrain and rock outcrops
 - alluvium-colluvium
- ADVANGEO Multiperceptron feed-forward artificial neural network:
 - ability to learn complex patterns in input data
 - robust classification method
 - supervised non-linear classification
 - Input layers: K, eU, eTh, eTh/K, elevation, slope, relief, curvature, H, A, alpha (ALOS PALSAR)
 ASTER 14 bands, or Landsat 7 bands

Input Layer

Hidden Layer

Output Layer

Scheme of neural network classification algorithm

Results

1: 500,000 geomorphology

lateritic duricrusts
glacis with duricrusts
glacis without duricrusts

residual relief/rock outcrop

alluvium

ASTER - Mixture tuned matched filtering classification

lateritic duricrusts

lag mixed with clay

clay rich zones

alluviual clays mixed with vegetation

ADVANGEO neural network algorithm

Fe-rich duricrust (high glacis)

colluvial Fe-rich duricrust sed.

lateritic material (low glacis)

residual relief/rock outcrop

alluvial sediments

Comparison between Landsat and ASTER

 Input bands
 O.A. (%)
 K

 ASTER 14b
 60.57
 0.32

 Landsat 7b
 56.32
 0.26

ASTER

Landsat 7 ETM+

Summary and future work

- Best results were obtained by combined analysis of the multivariate dataset using ADVANGEO neural network algorithm
 - Airborne gamma-ray spectrometric data
 - SRTM elevation data and its derivatives
 - Polarimetric radar data
 - Multi-spectral ASTER data
- Landsat and ASTER data provide comparable neural network classification results
- Elevation data and its derivatives are an essential component in the classification
- Ongoing field checking and ground truthing during the WAXI project

Thank you!

WAXI- West African Exploration Initiative

IXOA- L'Initiative d'Exploration Ouest Africaine