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Abstract — The central Erzgebirge is well known for its tin 

and tungsten deposits. A combination of knowledge and data 

driven approaches was used to create qualitative and 

quantitative prediction maps for both vein-hosted and skarn-

hosted Sn and W deposits. The advangeo® Prediction Software 

uses Artificial Neural Networks (ANN) to create 2D, 2.5D and 

3D predictive models for these and other commodities.  

 

I. INTRODUCTION 

IN AND TUNGSTEN mining in the Erzgebirge mountains 

(Saxony, Germany) has a history going back at least to 

the 14th century and reached its peak in 1950 to 1990. 

Recently, exploration activities in the vicinity of historical 

mining areas have resumed. The ROHSA project (raw 

materials of Saxony) of the Saxon State Office for 

Environment, Agriculture and Geology (LfULG) aims to 

improve access to data regarding to the economic geology 

and mining history of the area. Phase 3.1 of the ROHSA 

project includes the creation of qualitative and quantitative 

predictive maps of Sn, W, fluorite and baryte for a test area in 

the central Erzgebirge with an up-to-date approach using 

ANN. The test area includes approx. 740 km² in the vicinity 

of the historic mining centers of Geyer – Ehrenfriedersdorf, 

Annaberg-Buchholz and Aue – Schwarzenberg.  

This area is characterized by the Annaberg gneiss dome in 

the south-east and the Aue – Schwarzenberg gneiss dome in 

the south-west. The gneiss is overlain by a several km thick 

sequence of mica schists, phyllites and shales of cambro-

ordovician age, which drape around the gneiss domes in the 

southern part and dip with approx. 40° to the NW in the 

northern part of the test area. The gneiss domes are intruded 

by syn- to postorogenic variscan granites of the Eibenstock 

(Sn-, W-, Li-enriched), Bergen (W-enriched) and Kirchberg 

(barren) types. Sn and W deposits occur as pneumatolytic 

quartz-cassiterite resp. quartz-wolframite veins and as 

magnetite-cassiterite-wolframite-scheelite skarns in three 

distinct levels of the mica schist – phyllite sequence.  

For the 3D predictive model, the area was extended to the 

NW along the Central Saxon Lineament, an area with many 

fault-bounded blocks of various lithologies and an inferred 

covered intrusion of a Sn-enriched granite. 

II. METHODOLOGY 

2D case. To facilitate computation, all datasets must be 

converted to a common grid, in this case of 50 m resolution. 

A database was compiled of known deposits, and the 

location, size and category of resource blocks within them. 

The corresponding grid cells were then assigned the property 

of deposit for Sn resp. W of the vein resp. skarn type. For 

quantitative predictions, the metal content of the resource 

blocks was divided evenly across their corresponding grid 

cells. These are the training data which the ANN will attempt 

to recover from the model input data during the training 

phase of the modeling. Geological, geochemical (stream 

sediment geochemistry) and geophysical data (aeromag-

netics, surface gravity surveys, airborne gamma spec-

trometry) were collected from published sources and the 

archives of LfULG. Geophysical and geochemical data were 

processed and interpolated to the common grid. Gradients 

and curvatures of the field were calculated in advangeo® 

Prediction Software and used as additional optional model 

input data (MID). Faults were grouped by direction (N-S, 

NE-SW, E-W, NW-SE) and by length to assess which sets of 

faults may be relevant to the formation of the different types 

of deposits. The grid cells were attributed with distances to 

the nearest fault of every type, and the distance to the nearest 

fault crossing. Finally, an isobath model of several geologic 

horizons and the surfaces of the different granite types was 

constructed. Distances were calculated between the granite 

and the horizons and the granites and the surface. 

In advangeo®, eight types of models were calculated 

(combinations of commodity: Sn or W, type: vein or skarn, 

qualitative or qualitative), each with the appropriate training 

data and different combinations of MID. The resulting 

predictions were assessed by the smoothness of the error 

curves, the residual error and by their power to recover the 

training data. For each MID, connection weights and the 

weight according to Garsons´ algorithm [1] [2] were 

calculated to assess the importance of various geologic 

factors. In successive models, the MID are refined to test 

different combinations and obtain progressively better 

predictions. The prediction grids are then converted to 

prediction maps for each type of deposit. 

2.5D case. The 2D predictions are limited to the near 

surface area. While they can predict some concealed deposits 

by incorporating the distance grids discussed above, it is not 

possible to resolve the variability with depth. In the case of 

the skarn deposits, some depth discrimination is possible 

because the skarns occur in three distinct calcareous 

horizons. Distances to granites and faults were calculated 

with respect to the median plane of these horizons, 

furthermore the 3D angles between these median planes and 

the underlying granite were calculated. By reconstructing the 

eroded parts of the skarn horizons as far as possible with the 

known structural data and thickness constraints, it is possible 

to “predict” former skarn occurrences in the eroded part of 

the model and thereby assess the level of erosion of the 

overall ore district and of individual deposits. We created 

separate 2D models as described above for each of the three 

horizons and projected each prediction grid to its position in 
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3D space (Fig. 1). The result is a differentiated picture of the 

skarn deposits in the test area and with improved detection 

and accurate depth estimates of predicted concealed deposits. 

Unlike a full 3D approach, this model is still limited to 

calculating only vertical distances to the granites, and to 

calculating only horizontal distances to faults that are 

assumed to be uniformly vertical. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 – 3D view of the 2.5D skarn prediction color-coded with 

the predicted favourability. The paler color scale represents the 

eroded parts of the deposits. View is from the SW across the Aue – 

Schwarzenberg gneiss dome. 

 

3D case. To overcome these limitations and to fully 

analyze the 3D geometry of known deposits relative to 

controlling faults or contacts, a transition from a grid-based 

model to a voxet-based model is necessary. A 3D model of 

the extended test area was constructed and converted to a 

voxet model in Paradigm Gocad®. Inversion modeling via 

Intrepid GeoModeller® was employed both to convert 

gravity and magnetics data to 3D data (in the form of density 

and susceptibility models) and to refine the geometry of 

concealed granite intrusions. The individual voxels 

(100x100x50 m, corresponding to 12.8 Mio. voxels in the 

80x20x4 km model space) were attributed with geological 

unit, lithology, geochemical and geophysical properties, 

tendency to form joints, existence of calcareous layers and 

other properties. True 3D distances to the different categories 

of faults and to the granite surfaces were calculated with the 

tools available in Gocad®. The outer boundaries of known 

deposits were modeled and the voxels inside were assigned 

as training data for the corresponding type of deposit. 

The voxet was imported into the advangeo3D® Prediction 

Software. Model creation, assessment and refinement 

proceeded in analogy with the 2D case. The prediction is 

returned as another voxet and can be viewed and manipulated 

in Gocad®, or free viewers like Geocando or Mira 

Geoscience Analyst®. 

III. RESULTS & DISCUSSION 

Prediction maps of the model area were generated for the 

different types of commodities and deposits. The maps 

contain charts that help the user to asses the model quality 

and a table of the MID and their relative weights. Of note is 

the potential for tin reserves and resources in vein-type 

deposits in the model area predicted as slightly in excess of 

200 kt, mostly in the known deposits and their periphery. Tin 

in skarn-type deposits is predicted to amount to 700 kt, 

mostly in so far poorly explored areas. For tungsten, the 

amount in vein-type deposits is negligible (few kilotons), 

however 120 kt are predicted to be hosted in skarns. For the 

comparatively better explored areas the predictions are 

similar to earlier predictions using other techniques. For less 

explored areas, no previous quantitative predictions are 

available. The erosional level of the district is intermediate, 

with about 50% of the skarn deposits eroded. 

For the extended model area in the 3D case, currently only 

qualitative predictions (the likelihood of a deposit 

irrespective of its commodity content) are available. At this 

point, it is likely that concealed skarn deposits exist in the 

roof of some concealed granites. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 – View of the 3D prediction for skarn-type tin deposits. 

Individual voxels are 100x100x50 m and color-coded for the 

predicted favourability for this deposit type. View is from the West. 

IV. CONCLUSION 

A wide array of qualitative and quantitative geological 

data can be evaluated via Artificial Neural Networks. We 

have demonstrated an application to a traditional mining area 

and the prediction of as-yet unexplored concealed deposits in 

this area. Quantitative estimates are in line with estimates 

from other techniques. The progress from 2D to 3D modeling 

has greatly improved the numerical representation of deposit-

controlling geological factors and enables us to define 

drilling targets and locate them in3D space. 
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